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Abstract

A phenomenological theory is developed for the

propagation of plane electromagnetic waves in a deformed

non-absorbing centrosymmetric isotropic material. It is

assumed that the dielectric constant and specific reluctance

matrices depend on the deformation gradients at the instant

of measurement. The theory is formulated from both the

Eulerian and Lagrangian standpoints.



1. Introduction

In this paper we consider the propagation of plane

electromagnetic waves in a non-absorbing material which is

subjected to finite deformations. It is assumed that the

material is isotropic when undeformed and when no electro-

magnetic fields are present and that it is centrosymetric.

The theory is formulated from both Eulerian and Lagrangian

points-of-view. The latter formulation rests on the Lagrangian

formulation of Maxwell's equations for a deformed material due

to Walker, Pipkin and Rivlin [1].

In each case the assumption is made that the material

is linear with respect to electromagnetic effects, but that

the dielectric constant and specific reluctance matrices may

depend on the displacement gradients in the material. It

follows from the isotropic character of the material that the

dielectric constant and specific reluctance matrices are

isotropic matrix functions of the Cauchy and Finger strains,

accordingly as the Lagrangian or Eulerian formulation is adopted

and may be expressed in terms of these in canonical forms. In

each case we obtain from the constitutive equations and Maxwell's

equations a secular equation for the determination of the slow-

ness of a plane electromagnetic wave, propagating in an arbitrary

direction in a material which is subjected to a pure homogeneous

deformation.
We pursue the study of this equation in the Eulerian

case and obtain the six principal slownesses. It is found

that there is a relation between these six slownesses. In the

case when only the dielectric constant or only the specific

reluctance depends on the deformation, this single relation is

replaced by three relations.

V
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We then discuss -the propagation of the electromagnetic

wave in any direction in a principal plane. In §§ 5 and 6 we

consider propagation in a material which is subjected to shear-

ing deformations.

Finally in § 7 we consider the application of the

theory to materials for which the dielectric constant and

specific reluctance matrices depend on the history of the de-

formation, but in which the deformation is held constant.

'I

..
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2. The constitutive equations

(a) Eulerian formulation

We consider a body to undergo a deformation which

is described in a rectangular cartesian coordinate system x

by

xi = x. (t) = x. (XAt), (2.1)

where x. is the position in the system x, at time t, of a

particle which was at XA in the same system at a reference

time t
0

We make the constitutive assumption that the electric

displacement field di, at time t, depends only on the electric

field e and deformation gradients x , measured at the particlepp,
considered at time t. We also assume that the dependence of

d. on e is linear. We make the analogous constitutive assumption1 p
that the magnetic induction field bit at time t, depends only on

the magnetic intensity field h and deformation gradients xp,A,

the dependence on the former being linear.

If the material is isotropic in its reference state,

it follows [2] that

di = kijej and hi = b ijbit (2.2)

where ki, the dielectric constant tensor, and wii' the specific

reluctance tensor, are given by

k. k 6 + kc i +k cij 0 ij 1j 2Cik kj

and (2.3)

W tj m 0 ij 1 cij +2 cik Ckj'
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where cij is the Finger strain tensor defined by

cij = X i,AXj,A - 6 ij (2.4)

In (2.3), ko , k1 , k2, wo' wl' w2 are functions of the invar-

iants tr c, tr c2 , tr c3, where c icjl. Introducing

the notation k =1 k~jll, e = (e.), with analogous meanings

for other bold-face symbols, we may rewrite (2.2) as

d k.e and h = w.b, (2.5)

where

k k koI + klC + kc~,
0-I~c 2

2 (2.6)W W I + 0 ic + W2
0 - 2

and I denotes the unit matrix.

For a plane electromagnetic wave, adopting the usual

complex notation, we may write e, h, J, b in the form

1W(Sx-t)
(e, h, d, b) = (e, h, d, b) e -s (2.7)

where e, h, d, b and s are vectors which may be real, imaginary,

or complex constants. s is the complex slowness of the wave

and w is its angular frequency. Then, the constitutive equations

(2.5) become

d = k.e, h = w.b. (2.8)

tWe will see later that for the constitutive equation discussed

here, the case when s is complex can be ruled out.
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(b) Lagrangian formulation

* An alternative formulation may be attained in the

following way. In accord with Walker, Pipkin and Rivlin

E1], we define the reduced fields E, H, B, D by the equations

E = F.e, H = F.h,

(2.9)

B= (det F) F-l.b and D = (det F) F-.d,

where the notation

F FiA (2.10)

is used and the star denotes the transpose. The constitutive

assumptions made as a basis for the Eulerian formulation are

equivalent to the assumptions that D and. B are linear functions

of E and H respectively and both D and B depend on F.

Then, the assumption that the material is isotropic

in its reference state leads to the conclusion that

5 = K.E and H = 1.B (2.11)

and K and 2 are expressible in the forms

K =K I + KlC + K C2

0- 22

and (2.12)

0= + 9 i
C  + Q2 ,2

where C is the Cauchy strain defined by

Li
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'CABIJ=1 xiAxiB 6ABI (2.13)

2 3
and Ko, K1, K2, 0o, Qi' 02 are functions of tr C, tr C , tr C3

The relations between K, P (=0,1,2) and ka W a

(a=0,1,2) can be derived, However, the algebra involved is

somewhat cumbersome.

Now, we consider the electromagnetic wave for which,

adopting the usual complex notation,

(E, H, D, B) = (E, H, D, B)elW( ' -t), (2.14)

where E, H, D, B and S may be real, imaginary or complex

constant vectors. We obtain from (2.11)

D = K.E, H = Q.B. (2.15)

We note that if the electromagnetic fields e, h, d, b corres-

pond to a plane wave, i.e., are of the form (2.7), the derived

electromagnetic fields E, H, D, B will not, in general, have

the form (2.14).

*
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3. Derivation of the secular equation

(a) Eulerian formulation

Maxwell's equations may be written in the form

curl e = -Tb/ t, curl E= ad/t, (3.1)

where

(curl )i ikek (3.2)

Introducing (2.7), we obtain

Sijksjek = b., sijkSh = -di . (3.3)

Eliminating e, h and b from equations (3.3) and (2.8), we

obtain,

.+ E ssW d 0. (3.4)
ij + ipqmrs pr qm

Alternatively eliminating e, h and d from equations (3.3)

and (2.8) we obtain

[_6ij e ipq~mrspSr (k-l) qmwj bj = 0. (3.5)

Equation (3.4) yields a non-trivial solution for

d and (3.5) yields a non-trivial solution for b provided

that

lkij + 6ipq5 jsr p r qs 0. (3.6)

F K
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For the wave (2.7), the planes of constant phase

are

s .x = constant (3.7)

and the planes of constant amplitude are

s-.x = constant. (3.8)

In the particular case when these are the same, we may write

s = sn, (3.9)

where n is a (real) unit vector and s is a constant which may

be real, Lmaginary, or complex. Then, equations (3.4) and (3.5)

become

ij +S2 nn w(k-) S~d 0iJ+  ipq~mrsnpnr qm k - l )~  =

and (3.10)

L + s ipq mrsnpnr (k-) qm s b = 0,

and (3.6) yields the secular equation for the complex

slowness s,

Ik + s 2 epqE jsrn n w I = 0. (3.11)ij p r qs

We shall call the direction of n the direction of propagation

of the wave.

It is shown in the Appendix that (3.11) may be written

as

s4 - 2 +, (3.12)

-is+00
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where

= (n.k.n)(n. -. n) det w,

= n.{(tr k W)k - k W k}.n, (3.13)

0 = det k.

Equations (3.10) may be simplified slightly by

choosing the reference system so that the unit normal to the

wave-front is in the direction of the x 3-axis, i.e., so that

n. i3" Equations (3.3) then yield, with (3.9),

d3 =b 3 = 0 (3.14)

and equations (3.10) become

_ s_ 2 w (k-) p 8 d =0aypt -s( o0

and (3.15)

_2 _ e (k- 0,

co y PT Y

where Greek indices take the values 1, 2 and e denotes the

two-dimensional alternating symbol.

it is evident from (3.14) and (3.15) that the wave

is, in general, polarized elliptically with its electric

displacement and magnetic "iduction fields in planes normal

to the direction of propagation. It then follows from (2.8)

that e and h are, in general, not perpendicular to the

direction of the propagation.
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Introducing ni = 6i3 into (3.11), or more simply

from (3.15) we can rewrite the secular equation as

Ik s 2 e I =0. (3.16)

2From (3.12), s is given by

2 { +(,2 4 8)i/2}/2 . (3.17)

2
These values of s are real if and only if

22

! > 480. (3.18)

If both of the values of s given by (3.17) are positive,

then we obtain two positive values of s and two negative

values. This corresponds to the possibility of two waves

in the positive direction of n and two waves in the negative

direction. If, on the other hand, @,t and 0 are such that
2

for any n, one of the values of s , given by (3.17), is

negative, the corresponding values of s are imaginary. The
material would then be inherently electromagnetically unstable

in the state of deformation considered.
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(b) Lagrangian formulation

It has been pointed out by Walker, Pipkin and

Rivlin [11 that in terms of the derived electromagnetic

fields E, H, D and B, Maxwell's equations can be written as

Curl E = - B/t, Curl H = 31/3t, (3.19)

where

(Curl E)A =e ABCE c,B (3.20)

Introducing (2.14) into (3.19), we obtain

eABCSBEc = BA, CABCSBHC = -DA' (3.21)

Eliminating E, H and B from (3.21) and (2.15), we obtain

F6 AB + DAPQ MRSSRfQM( )sDB 0. (3.22)

Again, eliminating E, H and D from (3.21) and (2.15) we

obtain

6AB + eAPQEMRSS R(K-1)QMQ BB = 0. (3.23)

Again, if the planes of constant amplitude and phase

in the X-space are the same and N is the unit normal perpendicular

to this plane, we may write analogously with (3.9),

S = SN, (3.24)

where S is a constant which may be real, imaginary, or

complex. Then, equations (3.22) and (3.23) become
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AB S EAPQMRSNP NR QM(K - I )  DB  0

and (3.25)

L AB + S2 C~NN QK QM9 S9 BB = 0.

The secular equation for S is

IKAB + S = 0. (3.26)

Following a procedure similar to that used in the Appendix
to derive (3.12), we can express (3.22) in the form

2 + = 0, (3.27)

where

= (N.K N) (N.-l.N)det Q,

T = N.{(tr K Q) K - K Q R}.N, (3.28)

0 = det K.
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4. Pure homogeneous deformation

(a) Propagation in principal direction

We now suppose that the deformation to which the

body is subjected is the pure homogeneous deformation, the

principal directions for which are along the axes of the ref-

erence system x. Then

c = 0 (i~j) (4.1)
J$

and it follows from (2.3) that

kij =0, w ij =0 (i+j). (4.2)

The principal waves are waves for which the directions

of propagation are along the principal directions of strain,

i.e., the waves for which

n.= 6il' 6i2' or " (4.3)

We consider first the waves propagated along the x3-axis.

Then, introducing (4.2) into (3.16), we obtain

k1 1  s22' 0

= 0, (4.4)

0 ,k2 2 - S2l

whence

s2 2
s k /2 or s = k22/W1i. (4.5)112 2 1
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We assume that these quantities are positive and consider

the waves corresponding to the positive square roots, i.e.,

the waves travelling in the positive direction of the x3-axis.

We employ the notation

s13 = (k 1/2 s23 (k1/2 (4.6)

We note from (3.15) that, for the wave for which s = s1 3,

d2 = bI = 0 and, for the wave for which s=s 2 3 , dI = b2 = 0.

* Thus, the former wave is polarized with d and b in the x

and x2 directions respectively and the latter with d and b

in the x2 and x1 directions respectiv:ely. It follows from

(4.2) that for these waves e is polarized in the same direction

as d and h in the same direction as b.
4 More generally, we adopt the notation that s. (i j)

13
is the slowness for the principal wave whose direction of

propagation is along the xj -axis and which is polarized with

its electric displacement field in the x.-direction. Then,

analogously with (4.6), we have the further relations

1/2 1/2
s32 (k33/ 11  , s12 = (kli/ 33)

s 21 (k22/A33)1/2 = (4.7)~~~2 s1 (k l 3 3 /w 2 2 )i.

It follows from (4.6) and (4.7) that

s13s32s21 = s23s12s31 (4.8)

and this relation is valid for any constitutive equations of

the form (2.8) with k and w given by (2.6), ko, kl, k2 and

o' W 1 ' w2 being arbitrary functions of tr c, tr c2 , tr c3
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In the case when wi = 2 0 and w is constant,

i.e. the specific reluctance is independent of deformation,

we have w= co and it follows from (4.6) and

(4.7) that

s13 = S12' S21 = S23' s32 S31. (4.9)

If on the other hand kI = k2 = 0 and k is constant, i.e.0
the dielectric constant is independent of deformation, we have

k = k 2 2 = k = k and it follows from (4.6) and (4.7)
11 22 33 0

that

s23 s3 2 ' s13 = s3 1 s21 = s12 (4.10)

L%
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(b) Direction of propagation in principal plane

We shall now consider the somewhat more general

case when the direction of propagation n is in the plane

formed by two of the principal directions of strain. Choosing

the coordinate system x with the x -axis perpendicular to this
2

plane, we have

n. (n 1 ,0,n 3), (4.11)

and the. Finger strain components are, as before, ci., with

c = 0 (i+j). We choose a new coordinate system R with the

axis x parallel to n and x_ coinciding with x . Then
3 -2 2*

x = ai x' (4.12)

where ai is given by

n 0, -nI

a =1 0, 1, 0 ij.(4.13)

n1 , 0, n

The components i of the Finger strain tensor in the system
ij

k are given by

cij =apajcpq" (4.14)
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Thus,

2 + 2 (cc nn3
c n +cn0( c)

H 11 3 33n1 11-3313

hij 0 , c2 2  0

(c 1 1 -c 3 3 )n 1 n 3 , 0 c1 in1 + c 3 3 n3

and (4.15)

2 2 2l223)nln3

C11 3 3 1 ( 33i-c 3

SCikCkj = 0 22 0
ili

2 2 2 2 2(Cl-c 3 ,nln 3 , 0 , c n + c3n11 -13f11 1 33 3

Referred to the system R, the dielectric constant and inverse

magnetic permeability matrices, k and ij respectively, are, by

analogy with the relations (2.3),given by

ij k ko6ij + klii + k2 ik kj

and (4.16)

.= W + i w + W
ij o iJ 1 ij 2 ik kj'

Ii
(I Il
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where ko, k ..., 2 have precisely the same meanings as

in (2.3). Since tr c, tr c 2 , tr c3 are invariant under

orthogonal transformations, k , ... , may be expressed0 2

as functions of tr 6, tr of the same forms as they

are functions of tr c, tr c , tr c. Introducing (4.15) into

(4.16), we see that

k =(k'). =i =(i-) = 0,

ii . ij ij .-

(ij = 12, 21, 23, 32). (4.17)

Introducing (4.17) into the secular equation (3.16),

with k and w replaced by k and ii respectively, we obtain

s~2 21 2
= s 2 (say) =s13112

or (4.18)

2S ~ (say) ~
s = s23 = k2 2/ 11 .

Again assuming kli/O 22 and k22/!i are both positive, we see

from (3.15), with k, w, d and b replaced by k, 3, d and

respectively, that for the wave for which s 13' d2 = b, = 0

and for the wave for which s = s23, d, b 2  0"

$ . . . . . . . . . -
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5. Simple shear

We now consider the case when the deformation is a

simple shear of amount K, described in the rectangular cartesian

coordinate system x by

XI = Xl, x 2 = X2' x 3 = X3 + KX1 (5.1)

We consider a wave propagated in the positive direction of the

x3-axis, so that

n. 63" (5.2)

From (5.1) and (2.4), we obtain

0, 0, K 1 K2 , 0, K3

fcj~ 0, 0, 0 r Ii ccj 0, 0, 0 (5.3
K, 0, K 2  K 3  0 K2+K 4

Introducing (5.3) into (2.3) we obtain

Ikk2 02
ko+kK , 0 ',K(k+k )so2 1 2

' II
k 0 , k

K(k 1+k 2K 2)0k0+ (k 1+k 2+k K 2

and (5.4)

II

o+22 , 0 (1+2 2 )i

ij =0 ' 0O 0

S( 2 K) , 0 W +K (W 1 +W 2 +W 21 2 0 1O22

44'
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We recall that ko, k' k2 ' wo' ' W2 are functions of

tr c, tr c2 , tr c which are now given by

2 2 2 44 6
tr C = K , tr c = 2K + K , tr c 3  3K + K (5.5)

Introducing (5.4) into (3.16), we obtain

s =(ko+k2K2 1/2 or jk/(Wo+W2K2 1/2. (5.6)

From (3.15) we Eee that the first of these values of s leads

to

d2 = bI = 0 (5.7)

and the second leads to

dI = b2 = 0. (5.8)

Thus, in the case provided by (5.6)1, d and b are linearly

polarized in the x and x directions respectively and in the

case provided by (5.6)2' they are linearly polarized in the

x2 and x directions respectively. The corresponding express-

ions for e and h can be obtained by introducing (5.4) and

(3.14) into (2.8). We obtain, corrresponding to (5.7),

e= const.Lko+K2(k+k 2+k2K2), 0,-K(k 1+k2K2]

and (5.9)

h =cnst. [0, i 0

.. .. I
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and, corresponding to (5.8), we obtain

e = const. [oitO]

and (5.10)

h=const. [Wo+W 2 K 2 , K( +,2
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6. Shear in two directions

We now consider the case in which the direction of

propagation of the electromagnetic wave is along the x 3-axis,

but the direction of shear is in the x2x3 plane, the deform-

ation being described by

xI = XI, x2 = X 2 + AX1, x3 =X 3 + KXI . (6.1)

Introducing (6.1) into (2.4), we obtain

0, , K

cij = A, , AK

2
K, AK, K

and (6.2)

'2 2A+K, 0 , 0 0, A , KI )

Cic.c~j = 0 , A, K + (A2+ 2 ) A A2

K2 K21 4l

0 , AK, KK, K K, K

It follows from (6.2) and(2.3) that

2 2 2 2k + k2 (A +K), k1A + k2A(A +K

k -

kAX + k 2 (+K2, k + k X2 + k2
x 2 (l+X 2 + K2

and (6.3)
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W0 + W2 (X2 +K) W + W2X(A 2 +K )

WIaI w1 X +W 2 X X2+K:) 2 W0 + W1X x2 + W X2 (l+X 2+K 2

23ko' k , . 2 are functions of tr c, tr c and tr c3, which

are given by

22 tr 2(X 2  2 2 2 2tr c = +K, tr c = 2 +K) + (X +.2)2

(6.4)
3 = X2 2 2 2 2 3tr c 3(+K) + (X2+K)

Since the wave considered is propagated along the

x3 axis, it follows that the relations (3.14) and (3.15) are

satisfied. We have, therefore,

d3 = b = 0,3 b3

and (6.5)
2(6 ,-s A a)d= 0

where

Al = w 2(k) ii- w2 (k - l A () - (k
11 22- 11 ~21 21' A12 = w22 (k-l) 12 -21 (k-l)22

(6.6)

21 Wi1 (k 1 ) 2 1 - W1 2 (k 1 ) 1 1 , A2 2 = w1l (k - 1 ) 2 2 -12 ( k - l ) 1 2 .

From (6.5)2' we see that s is given by

16 -s 2 AgJ = 0, (6.7)
i.e.

-2 1 (A +A22 + 1 + 4A A 1/2
2 11 22 1221

(6.8)
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Introducing (6.8) into (6.5) 2' we obtain

d2  (A2 2-A) C (6.9)

d 2A1 2
1 1

where

C (A11A22)2 + 4A!2A21. (6.10)

' 1

In determining k , we may with advantage employ the

relation

k- 1(tr k) k + tr - tr k (6.11)

det ki

which follows directly from the Cayley-Hamilton theorem.

Introducing (2.6)1 into (6.11), again employing the Cayley-

Hamilton theorem and using the relation

det k 1 tr k) - 3tr k tr k 2 + 2tr k3] (6.12)

we see that the relation (6.11) may be expressed in the form

k-  = + T1 C + t 2C2 , (6.13)

where To , T1 and T2 are expressible as functions of tr c ,

2 3tr c and tr c3. Introducing (6.2) into (6.13), we obtain

!I.
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(k-1)l = To+ 2%+2)

(k-1)22 = T +T 1 2+ t 2A2(I+%A+K2), (6.14)

-1 +1 T2+TX2 X2 2

(k- 12 = (kT) = X +T2X()2+,c2

Introducing (6.14) and (6.3) into (6.6), we

obtain

A 1 = (W T+W 2 A 2 (W1 T +W2 T 0 -W T 1+

011 ( 0oo+0 T2K2) + 2(wIo 2o To2)

+ A2 K2 (2To+2T2-2T1 + X42(To+T2-T1) ,

2 2

2.

A22  = (oT+W2TK) +A 1 (T+o2 T+20o

+ A2K Ot2 +w-r 2 -- r2 ) + A4(o+22-I2)

A1 2  = (WTI-ITo) + AK 2 ( oT2-w2T (6.15)

+ A3 (w 2 T1 -(I1 T2 +WoT 2 -w 2 T 0

A21  = A(WTI-W o + AK2  o T2 -w2 T o+W 2 T1 -W
T 2

)

+ A3 (WoT 2 W 2 T o- 2 T I1 T2 ).

For brevity we introducq the notation

All a + b Ai2 + c x ,
11 11 11 11

A1 2  = a12X + b 12 3,

3 (6.16)A2 1  = a21X + b A3,

2 4A2 2  a 22 +b 22A + c22 ,

where, comparing (6.16) and (6.15),

b
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al = oTo + WOT K ,
a1 1  W0 0  o ~2 'C

bl I = (WTO+W 2 TO_ +oT 2 ) + ( K 2 (WT+W TT

... etc. (6.17)

Introducing (6,16) into (6.8) , denoting by s1 and

s the values of s obtained by taking the positive and negative

square roots respectively in (6.8), and expanding the expres-

sions for s1 and s2 as power series inX, we obtain

-2 +l2 -12
- a 11 + b 11X +a 12a 21(a 1-a 2)- X +.sI 11al 12a21 11.22

-2 2 1 2 (6.18)
2  22 -a 1 2a21 ( 11  22

Introducing (6.16) into (6.9) and expanding the

expression obtained as a power series in , we obtain

(d 2 /dl) = Aa21 (a11-a 2 2 ) + ...
S=S (6.19)

(dl/d 2 ) = Aa1 2 (a 2 2 _all)-1 +
s~2
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7. Application to time-dependent materials

We now considor that the dielectric constant matrix

k and specific reluctance matrix w depend not only on the

deformation gradients existing at the instant of measurement,

but on the whole history of the deformation gradients in the

particle considered up to this time. This means that k and w

are matrix functionals of the history of the deformation grad-

ients. However, if we restrict the deformations considered to

ones in which the body is taken from the undeformed state to a

certain state of deformation at some instant of time and then

held there, and we :Eurther make appropriate assumptions regard-

ing the nature of the functional dependence of k and w on

the deformation gradient history and the path by which the

material is taken from its undeformed state to the steady state

of deformations, we can still write the constitutive equations

for d and h in the forms (2.5) where k and w are now functions

of the steady state deformation gradients and the time which

has elapsed since these were produced in the material. All

the results obtained in the paper then follow with the proviso

that wo, W w2 and k0 , k3, k2 depend on this time as well as

2 3on the strain invariants tr c, tr c and tr c

This parallels the application of results in finite

elasticity theory to problems involving stress relaxation in

viscoelastic solids held at constant deformation [3,41.
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8. Appendix

In this section, we outline the computation which

yields the secular equation (3.12). With (3.11), we have

dt(ki +s 2 . n n wqr) = 0. (8.1
det (ipqC rs p s qr

Let
2

ai = s 2ip sp nn . (8.2)pqJrs p s qr

With (8.2), we may write (8.1) as

6 det (kij+aij = ipq Sjrs (ki+ij k pr +apr (kqs+ qs)

(8.3)
= ipqC jrs (kij kprkqs +3kij kpraqs +3kija prcaqs+ ij a praqs) = 0.

We then have

s ipqjrs kijkpr kqs = 6 det k. (8.4)

With (8.2), we obtain

3c S k k pa = 62 Fn.(kwk).n - (n.k.n.)(tr kw

(8.5)

3c8 s k ija a = 3s (n.k.n) L2n. . n +(tr w)

- tr w _ 2(tr w)(n.w.n)J, (8.6)

and

ipq5 jrs aij apr acs =6 det a . =0. (8.7)

Lpis~~r sl
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With (6.11), we note that the expression appearing within the

brackets in (8.6) may be written as

2_ 2 21-n. [2W%-(tr wj)w+(tr w) I-(tr w)IJ .n = 2det w(n.w .n).

(8.8)

Substituting (8.4), ... , (8.8) into (8.3) we obtain

det (i +aS ) 4 _ p52 + o = 0 (8.9)

where

= (n.k.n) (n.w .n) det w,

= (n.k.n)tr kw - n.kwk.n, (8.10)

6 = det k.

Equations (8.9) and (8.10) yield the result (3.12) and (3.13).
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